Discover the latest research at the intersection of Artificial Intelligence and Materials Science.
Every day, we track and curate new papers from arXiv.org, focusing on cutting-edge innovations in materials discovery, design, and prediction powered by AI and machine learning.
๐ Updated daily โ Powered by automation, driven by curiosity.
Last updated: 2025-10-09 06:16:05 SGT
Published: 2025-02-28
Category: cond-mat.mtrl-sci
ID: 2502.20933v2
Link: http://arxiv.org/abs/2502.20933v2
Crystal structure generation is fundamental to materials science, enabling the discovery of novel materials with desired properties. While existing approaches leverage Large Language Models (LLMs) through extensive fine-tuning on materials databases, we show that pre-trained LLMs can inherently generate novel and stable crystal structures without additional fine-tuning. Our framework employs LLMs as intelligent proposal agents within an evolutionary pipeline that guides them to perform implicit crossover and mutation operations while maintaining chemical validity. We demonstrate that MatLLMSearch achieves a 78.38% metastable rate validated by machine learning interatomic potentials and 31.7% DFT-verified stability, outperforming specialized models such as CrystalTextLLM. Beyond crystal structure generation, we further demonstrate that our framework adapts to diverse materials design tasks, including crystal structure prediction and multi-objective optimization of properties such as deformation energy and bulk modulus, all without fine-tuning. These results establish our framework as a versatile and effective framework for consistent high-quality materials discovery, offering training-free generation of novel stable structures with reduced overhead and broader accessibility.
Published: 2025-10-03
Category: cs.LG
ID: 2510.05160v1
Link: http://arxiv.org/abs/2510.05160v1
Inverse design, which seeks to find optimal parameters for a target output, is a central challenge in engineering. Surrogate-based optimization (SBO) has become a standard approach, yet it is fundamentally structured to converge to a single-point solution, thereby limiting design space exploration and ignoring potentially valuable alternative topologies. This paper presents a paradigm shift from single-point optimization to generative inverse design. We introduce a framework based on a Conditional Variational Autoencoder (CVAE) that learns a probabilistic mapping between a system's design parameters and its performance, enabling the generation of a diverse portfolio of high-performing candidates conditioned on a specific performance objective. We apply this methodology to the complex, non-linear problem of minimizing airfoil self-noise, using a high-performing SBO method from a prior benchmark study as a rigorous baseline. The CVAE framework successfully generated 256 novel designs with a 94.1\% validity rate. A subsequent surrogate-based evaluation revealed that 77.2\% of these valid designs achieved superior performance compared to the single optimal design found by the SBO baseline. This work demonstrates that the generative approach not only discovers higher-quality solutions but also provides a rich portfolio of diverse candidates, fundamentally enhancing the engineering design process by enabling multi-criteria decision-making.
Published: 2025-10-01
Category: cs.CL
ID: 2510.05142v1
Link: http://arxiv.org/abs/2510.05142v1
Data-driven materials discovery requires large-scale experimental datasets, yet most of the information remains trapped in unstructured literature. Existing extraction efforts often focus on a limited set of features and have not addressed the integrated composition-processing-microstructure-property relationships essential for understanding materials behavior, thereby posing challenges for building comprehensive databases. To address this gap, we propose a multi-stage information extraction pipeline powered by large language models, which captures 47 features spanning composition, processing, microstructure, and properties exclusively from experimentally reported materials. The pipeline integrates iterative extraction with source tracking to enhance both accuracy and reliability. Evaluations at the feature level (independent attributes) and tuple level (interdependent features) yielded F1 scores around 0.96. Compared with single-pass extraction without source tracking, our approach improved F1 scores of microstructure category by 10.0% (feature level) and 13.7% (tuple level), and reduced missed materials from 49 to 13 out of 396 materials in 100 articles on precipitate-containing multi-principal element alloys (miss rate reduced from 12.4% to 3.3%). The pipeline enables scalable and efficient literature mining, producing databases with high precision, minimal omissions, and zero false positives. These datasets provide trustworthy inputs for machine learning and materials informatics, while the modular design generalizes to diverse material classes, enabling comprehensive materials information extraction.