Elastic Mechanics

2 minute read

Published:

二阶弹性常数(SOECs)控制着材料的力学性质,对材料的稳定性和刚度有重要影响。

弹性常数(Elastic Constants)

在材料线弹性范围内,固体对外加应变$\varepsilon=(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4,\varepsilon_5,\varepsilon_6)$的应力响应$\sigma=\sigma_1,\sigma_2,\sigma_3,\sigma_4,\sigma_5,\sigma_6)$满足广义胡克定律(Hooke’s law)

\[\sigma_i=\sum_{j=1}^6C_{ij}\varepsilon_j\]

其中应变$\sigma_i$和应力$\varepsilon_j$分别表示为具有6个独立分量的向量,即$1\leq i, j\leq6$。

$C_{ij}$是以$GPa$为单位的$6 \times 6$对称矩阵表示的二阶弹性刚度张量,可由应力-应变曲线的一阶导数确定。

\[C_{ij}=\begin{pmatrix}c_{1111}&c_{1122}&c_{1133}&c_{1123}&c_{1131}&c_{1112}\\c_{2211}&c_{2222}&c_{2223}&c_{2223}&c_{2231}&c_{2212}\\c_{3311}&c_{3322}&c_{3333}&c_{3332}&c_{3331}&c_{3312}\\c_{2311}&c_{2322}&c_{2333}&c_{2323}&c_{2331}&c_{2312}\\c_{3111}&c_{3122}&c_{3133}&c_{3123}&c_{3131}&c_{3112}\\c_{1211}&c_{1222}&c_{1233}&c_{1223}&c_{1231}&c_{1212}\end{pmatrix}\equiv\begin{pmatrix}C_{11}&C_{12}&C_{13}&C_{14}&C_{15}&C_{16}\\C_{12}&C_{22}&C_{23}&C_{24}&C_{25}&C_{26}\\C_{13}&C_{23}&C_{33}&C_{34}&C_{35}&C_{36}\\C_{14}&C_{24}&C_{34}&C_{44}&C_{45}&C_{46}\\C_{15}&C_{25}&C_{35}&C_{45}&C_{55}&C_{56}\\C_{16}&C_{26}&C_{36}&C_{46}&C_{56}&C_{66}\end{pmatrix}\]

弹性常数$C_{ij}$是应力对应变展开线性项的系数,$i$代表应力方向,$j$代表应力引起的应变方向。

XXYYZZYZ(ZY)ZX)(XZ)XY(YX)
123456

可以证明:$C_{ij}=C_{ji}$,因此独立弹性常数最多有21个。独立弹性常数的个数取决于晶体的对称性。对称性越低,独立弹性常数越多。

$S_{ij}$为柔度张量的分量,对应于弹性张量的逆矩阵,即$[ S_{ij} ] = [ C_{ij} ]^{-1}$,单位为$GPa^{-1}$。

Born弹性稳定性判据

Sufficient and necessary conditions for mechanical stability:

Cubic

\[C_{11}-C_{12}>0,\quad C_{11}+2C_{12}>0,\quad C_{44}>0\]

Hexagonal & Tetragonal(Ⅰ)

\[\begin{aligned}&C_{11}>|C_{12}|,\quad2C_{13}^2<C_{33}(C_{11}+C_{12}),\\&C_{44}>0,\quad C_{66}>0\end{aligned}\]

Tetragonal(Ⅱ)

\[C_{11}>|C_{12}|,\quad2C_{13}^2<C_{33}(C_{11}+C_{12}),\\C_{44}>0,\quad2C_{16}^2<C_{66}(C_{11}-C_{12})\]

Rhombohedral(Ⅰ)

\[\begin{aligned}&C_{11}>|C_{12}|,\quad C_{44}>0,\\&C_{13}^{2}<\frac12C_{33}(C_{11}+C_{12}),\\&C_{14}^{2}<\frac12C_{44}(C_{11}-C_{12})\equiv C_{44}C_{66}\end{aligned}\]

Rhombohedral(Ⅱ)

\[\begin{aligned} C_{11}& >|C_{12}|,\quad C_{44}>0, \\ C_{13}^2& <\frac12C_{33}(C_{11}+C_{12}), \\ C_{14}^2+C_{15}^2& <\frac12C_{44}(C_{11}-C_{12})\equiv C_{44}C_{66} \end{aligned}\]

Orthorhombic

\[\begin{aligned}&C_{11}>0,\quad C_{11}C_{22}>C_{12}^2,\\&C_{11}C_{22}C_{33}+2C_{12}C_{13}C_{23}-C_{11}C_{23}^2-C_{22}C_{13}^2-C_{33}C_{12}^2>0,\\&C_{44}>0,\quad C_{55}>0,\quad C_{66}>0\end{aligned}\]

Monoclinic & Triclinic

Not shown here given the complexity of the equations and solution.

You can refer to this article for details.

弹性模量(Elastic modulus)

体积模量 & 剪切模量

多晶材料的晶粒是随机取向的,在统计意义上,这类材料可以被认为是(准)各向同性。因此,体弹模量K和剪切模量G一般通过对单晶弹性常数取平均得到

体积模量:材料的体积与各项均压的比值

剪切模量:剪切应力与应变的比值

目前应用最广泛的三种平均方法是:

  • Voigt average

  • Reuss average

  • Hill average

Hill证明了Voigt和Reuss弹性模量分别是严格的上界和下界,二者的算术平均值称为Voigt-Reuss-Hill ( VRH ) average,它能更好地近似多晶材料的实际弹性行为。

Voigt average

\[\left.\left\{\begin{array}{c}9K_V=(C_{11}+C_{22}+C_{33})+2(C_{12}+C_{23}+C_{31})\\15G_V=(C_{11}+C_{22}+C_{33})-(C_{12}+C_{23}+C_{31})+4(C_{44}+C_{55}+C_{66})\end{array}\right.\right.\]

Reuss average

\[\left.\left\{\begin{array}{c}K_R^{-1}=(S_{11}+S_{22}+S_{33})+2(S_{12}+S_{23}+S_{31})\\15G_R^{-1}=4(S_{11}+S_{22}+S_{33})-4(S_{12}+S_{23}+S_{31})+3(S_{44}+S_{55}+S_{66})\end{array}\right.\right.\]

Voigt-Reuss-Hill(VRH) average

\[K=\frac{1}{2}(K_{V}+K_{R})\\~\\G=\frac{1}{2}(G_{V}+G_{R})\]

杨氏模量 & 泊松比

杨氏模量:弹性限度内物体应力与应变的比值

泊松比:横向正应变与轴向正应变绝对值的比值

\[\begin{aligned}E&=\frac{9KG}{3K+G}\\~\\\nu&=\frac{3K-2G}{2(3K+G)}\end{aligned}\]

VASP计算

VASP可以计算弹性常数,进而得到材料的力学性能。 关键参数

IBRON        =    6
ISIF         =    3
NFREE        =    4 or 2

INCAR 参考:

SYSTEM   =  elastic_constants
ISTART   =  0
ICHARG   =  2

PREC     =  Accurate
ENCUT    =  400
EDIFF    =  1E-6
EDIFFG   = -0.01

IBRION   =  6
ISIF     =  3
NFREE    =  2
POTIM    =  0.015

NSW      =  1
NELM     =  100

ISMEAR   =  0
SIGMA    =  0.05

KSPACING =  0.15

LCHARG   = .FALSE.
LWAVE    = .FALSE.

Appendix

Crystal systemPoint groupsSpace groupsNumber of independent SOECs $C_{ij}$
Triclinic2($1$, $\bar1$)2(1-2)21
Monoclinic3($2$, $m$, $2/m$)13(3-15)13
Orthorhombic3($222$, $mm2$, $mmm$)59(16-74)9
Tetragonal (Ⅱ)3($4$, $\bar4$, $4/m$)14(75-88)7
Tetragonal (Ⅰ)4($422$, $4mm$, $\bar42m$, $4/mmm$)54(89-142)6
Trigonal (Ⅱ)2($3$, $\bar3$)6(143-148)7
Trigonal (Ⅰ)3($32$, $3m$, $\bar3m$)19(149-167)6
Hexagonal7($6$, $\bar6$, $6/m$, $622$, $6mm$, $\bar6m2$, $6/mmm$)27(168-194)5
Cubic5($23$, $m\bar3$, $432$, $\bar43m$, $m\bar3m$)36(195-230)3

Triclinic: 21 independent elastic constants

\[C_{ij}=\begin{pmatrix}C_{11}&C_{12}&C_{13}&C_{14}&C_{15}&C_{16}\\C_{12}&C_{22}&C_{23}&C_{24}&C_{25}&C_{26}\\C_{13}&C_{23}&C_{33}&C_{34}&C_{35}&C_{36}\\C_{14}&C_{24}&C_{34}&C_{44}&C_{45}&C_{46}\\C_{15}&C_{25}&C_{35}&C_{45}&C_{55}&C_{56}\\C_{16}&C_{26}&C_{36}&C_{46}&C_{56}&C_{66}\end{pmatrix}\]

Monoclinic: 13 independent elastic constants

\[C_{ij}=\begin{pmatrix}C_{11}&C_{12}&C_{13}&0&C_{15}&0\\C_{12}&C_{22}&C_{23}&0&C_{25}&0\\C_{13}&C_{23}&C_{33}&0&C_{35}&0\\0&0&0&C_{44}&0&C_{46}\\C_{15}&C_{25}&C_{35}&0&C_{55}&0\\0&0&0&0&C_{46}&C_{66}\end{pmatrix}\]

Orthorhombic: 9 independent elastic constants

\[C_{ij}=\begin{pmatrix}C_{11}&C_{12}&C_{13}&0&0&0\\C_{12}&C_{22}&C_{23}&0&0&0\\C_{13}&C_{23}&C_{33}&0&0&0\\0&0&0&C_{44}&0&0\\0&0&0&0&C_{55}&0\\0&0&0&0&0&C_{66}\end{pmatrix}\]

Tetragonal (Ⅱ): 7 independent elastic constants

\[C_{ij}=\begin{pmatrix}C_{11}&C_{12}&C_{13}&0&0&C_{16}\\C_{12}&C_{11}&C_{13}&0&0&-C_{16}\\C_{13}&C_{13}&C_{33}&0&0&0\\0&0&0&C_{44}&0&0\\0&0&0&0&C_{44}&0\\C_{16}&-C_{16}&0&0&0&C_{66}\end{pmatrix}\]

Tetragonal (Ⅰ): 6 independent elastic constants

\[C_{ij}=\begin{pmatrix}C_{11}&C_{12}&C_{13}&0&0&0\\C_{12}&C_{11}&C_{13}&0&0&0\\C_{13}&C_{13}&C_{33}&0&0&0\\0&0&0&C_{44}&0&0\\0&0&0&0&C_{44}&0\\0&0&0&0&0&C_{66}\end{pmatrix}\]

Trigonal (Ⅱ): 7 independent elastic constants

\[C_{ij}=\begin{pmatrix}C_{11}&C_{12}&C_{13}&C_{14}&C_{15}&0\\C_{12}&C_{11}&C_{13}&-C_{14}&-C_{15}&0\\C_{13}&C_{13}&C_{33}&0&0&0\\C_{14}&-C_{14}&0&C_{44}&0&-C_{15}\\C_{15}&-C_{15}&0&0&C_{44}&C_{14}\\0&0&0&-C_{15}&C_{14}&\frac{C_{11}-C_{12}}2\end{pmatrix}\]

Trigonal (Ⅰ): 6 independent elastic constants

\[C_{ij}=\begin{pmatrix}C_{11}&C_{12}&C_{13}&C_{14}&0&0\\C_{12}&C_{11}&C_{13}&-C_{14}&0&0\\C_{13}&C_{13}&C_{33}&0&0&0\\C_{14}&-C_{14}&0&C_{44}&0&0\\0&0&0&0&C_{44}&C_{14}\\0&0&0&0&C_{14}&\frac{C_{11}-C_{12}}2\end{pmatrix}\]

Hexagonal: 5 independent elastic constants

\[C_{ij}=\begin{pmatrix}C_{11}&C_{12}&C_{13}&0&0&0\\C_{12}&C_{11}&C_{13}&0&0&0\\C_{13}&C_{13}&C_{33}&0&0&0\\0&0&0&C_{44}&0&0\\0&0&0&0&C_{44}&0\\0&0&0&0&0&\frac{C_{11}-C_{12}}2\end{pmatrix}\]

Cubic: 3 independent elastic constants

\[C_{ij}=\begin{pmatrix}C_{11}&C_{12}&C_{12}&0&0&0\\C_{12}&C_{11}&C_{12}&0&0&0\\C_{12}&C_{12}&C_{11}&0&0&0\\0&0&0&C_{44}&0&0\\0&0&0&0&C_{44}&0\\0&0&0&0&0&C_{44}\end{pmatrix}\]

Ref:

  1. Physical Properties of Crystals

  2. Phys. Rev. Lett. 50, 697 (1983) - First-Principles Calculation of Stress

  3. Phys. Rev. B 90, 224104 (2014) - Necessary and sufficient elastic stability conditions in various crystal systems

  4. Chinese Journal of High Pressure Physics, 2022, 36(5): 051101

  5. Phys. Soc. A 65 349 - The Elastic Behaviour of a Crystalline Aggregate